全讯网2-51全讯网官方微博_澳门百家乐游戏官网_全讯网评级官方网站(中国)·官方网站

導航
首頁 - 活動 - ISCA明哲論壇:NO.122 Robust Benchmark Satisficing
活動
ISCA明哲論壇:NO.122 Robust Benchmark Satisficing

報告題目:Robust Benchmark Satisficing

報 告 人:Melvyn Sim

報告時間: 2025年09月17日(周三)09:30-11:00

報告地點:明哲樓517

主辦單位:東北財經大學現代供應鏈管理研究院

【報告人簡介】

Dr Melvyn Sim is a Provost's Chair Professor in the Department of Analytics and Operations (DAO) at the National University of Singapore (NUS) Business School. His research interests broadly encompass decision-making and optimisation under uncertainty, with applications in finance, supply chain management, healthcare, and engineered systems. He currently serves as a Department Editor for Manufacturing and Operations Management (MSOM).

【摘要】

We propose a robust benchmark satisficing framework for data-driven decision-making under uncertainty, designed to identify decisions whose expected revenue exceeds that of a comparator by a user-specified surplus—even when the true distribution is unknown. This framework generalizes the robust satisficing model of Long et al. (2023), by accommodating a broader range of benchmark-driven decision criteria as individuals often evaluate their performance relative to others or to reference standards. Built on distributionally robust optimization, our model employs the Wasserstein metric to model distributional ambiguity while ensuring finite-sample performance guarantees. Within this framework, we identify the optimal linear transformation of the uncertain parameters that minimizes conservatism, formulated as a determinant minimization problem with an exponential moment constraint. When estimating the deviation matrix from data, we also introduce a spectral regularization constraint to limit its condition number and prevent its determinant from collapsing to zero. We derive tractable reformulations under various structural assumptions on both the primary and comparator revenue functions, including settings with linear recourse. We validate the framework through two computational studies. In a portfolio optimization problem, our model consistently outperforms an equal weighted benchmark, offering improved risk-return profiles, especially with our proposed deviation matrices. In a multi-product newsvendor setting, where product demands depend on S&P 500 and gold prices, the model ensures revenue superiority over the better-performing benchmark. Together, these results underscore the framework’s flexibility and practical effectiveness in benchmark-driven, uncertain environments.



撰稿:王戈 審核:許建軍 單位:現代供應鏈管理研究院

新 聞
澳门百家乐娱乐平台| 单机百家乐小游戏| 百家乐官网号论坛博彩正网| 沙龙百家乐官网娱乐场开户注册 | 百家乐声音不印网| 大发888游戏平台hgx2dafa888gw| 西华县| 百家乐官网牌九| 百家乐官网怎样看点| 百家乐官网送现金200| 百家乐保单机作弊| 九游棋牌大厅| 百家乐官网双筹码怎么出千| 赌神网百家乐官网2| 乐天堂百家乐娱乐网| www.18lk.com| 金百家乐官网的玩法技巧和规则| 利博百家乐的玩法技巧和规则| 九龙娱乐| 百家乐官网龙虎台布| 澳门百家乐群代理| 百家乐官网翻天qvod粤语| 百家乐押注方法| 博九网百家乐官网现金网| 百家乐赌场策略论坛| 六合彩即时开奖| 葡京百家乐技巧| 百家乐筹码| 金城百家乐玩法平台| 网页百家乐官网游戏| 百家乐微笑玩法| 大发888娱乐亚洲| 皇冠网百家乐官网阿| 百博亚洲| 百家乐论坛博彩拉| 百家乐官网庄闲对冲| 百家乐真人娱乐城陈小春| 百家乐官网分析博彩正网| 百家乐官网规| 解析百家乐官网投注法| 马尼拉百家乐官网的玩法技巧和规则|